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AbstracL We consider a generalization of the infinite-range Shenington-Kirkpahick spin- 
glass model with arbitrary spin S and the inclusion of crystal-field effecls. For integer S. 
replica-symmetric calculations have shown the presence of both continuous and discontinuous 
transitions and a tricritical point. For S = I ,  we report a detailed numerical analysis of the 
replica-symmetric solutions. We locate lhe Krst-order boundary and clarify some inconsistencies 
of the previous analyses. Some analytic asymptotic expansions are used to support the numerical 
findings 

Ghatak and Shenington [I]  introduced a generalization of the infinite-range Sherrington- 
Kirkpatrick [Z] model of an king spin-glass with arbitrary spin S and the inclusion of 
crystal-field effects. In the replica-symmetric solution, for integer S, this generalized model 
displays both continuous and first-order transitions between the paramagnetic and spin- 
glass phases. Lage and de Almeida 131 investigated the stability of the replica-symmetric 
solutions and pointed out some difficulties associated with the analysis of the first-order 
transition. A more detailed analysis of the critical line, including an application of Parisi's 
symmetry-breaking scheme, has been published by Mottishaw and Sherrington [4]. 

In this paper, we take up again the problem of the first-order transition in the spin-1 
version of the Ghatak-Sherrington model. We present a detailed numerical study of the 
replica-symmetric spin-glass solution supplemented by some asymptotic expansions at low 
temperatures and in the neighbourhood of the tricritical point. Some inconsistencies of the 
previous works are clearly related to an insufficient numerical analysis of the properties 
of the spin-glass phase. In the anisotropy(D)-temperature(T) phase diagram, Ghatak and 
Sherrington had already shown the existence of up to three distinct paramagnetic solutions 
(although only one of them satisfies the stability requirements). In the present paper, we 
report numerical calculations to show the existence of up to four distinct (and unstable) 
spin-glass solutions. As in the Shenington-Kirkpatrick model, there is always a negative 
eigenvalue of a Hessian matrix. The other eigenvalues, however, may be negative or even 
complex in large portions of the phase diagram. Since the stability requirements are of no 
help for the selection of the acceptable spin-glass solution, we propose a criterion which 
consists in choosing the branch which meets continuously with the spin-glass solution in 
a region of the phase diagram where there is no chance of ambiguity. Equating the free 
energies of the paramagnetic and spin-glass solutions, we obtain the fist-order boundary. 
It is remarhble that in this transition region all the stability conditions are violated. In 
complete agreement with the numerical calculations, an asymptotic analysis is used to 
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correct earlier results near the tricritical point. Also, from asymptotic calculations at T = 0, 
we locate the first-order transition at D = 0.899033 06..  . , far from the value l / G ,  as 
quoted by previous authors [l, 41. 

F A  da Costa et al 

The spin-glass model of Ghatak and Shenington is given by the Hamiltonian 

where Si = 0, f l .  f2,. . . , &S, the (ij) sum is over all distinct pairs of sites, and D is a 
parameter of anisoaopy. The exchange interactions are independent. identically distributed, 
random variables with a Gaussian probability distribution, 

For S = 1, in the D -+ w limit, we regain the Sherrington-Kirkpatrick model of an king 
spin-glass. 

Using the replica method [l,  41, the quenched free energy per site is given by 

where 

with 

and 

where (a@) indicates a distinct pair of replicas (or # p ) .  The extremum conditions are given 
by pa = ( (Sa) ' ) ,  and qcp = (S"Sa), where (. . .) indicates a thermal average with respect 
to H,, . 

In the replica-symmetric ansatz, we have the free energy per site, 

where 
X ' v 4  x v 4  z ( x )  = 1 t Zexp -- ( T ) c o s h ( ~ )  

and 
*- ' (D-r )  P - 4  
-45 

with k B  = 1, and J = 1, to simplify the notation. The extremum conditions can be written 
as 

p = j+m exp (-T) X 2  ( x )  

-m G 
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Figure 1. Sketch of the phase diagram as obtained 
by Ghatak and Shenington in the replica-symmetric 
approximation. The full curve AT is the curve of 
sewnd-order bansitions and the broken c w e  ET is 
the suggested line of first-order transitions. Note that 
the first-order boundary ends at the point E where 
D = 1 1 6 ,  

In figure 1 we show the D-T phase diagram obtained by Ghatak and Shenington from 
these equations. There is a spin-glass phase (q > 0) separated from a paramagnetic phase 
(q = 0) by a second-order transition line AT at higher temperatures, and by a first-order 
curve BT at lower temperatures. The paramagnetic solution has been fully analysed in the 
previous publications (the second-order boundary can be obtained analytically). Given T 
and D ,  for q = 0. it is interesting to remark again that there may be three distinct solutions 
for the parameter p (but only the smallest solution is stable). The ticritical point is located 
at T@ = 4, and Dp. = 4 + f(2ln2) = 0.962098.. . . Although Lage and de Almeida 
[3] analyse the stability of the replica-symmetric solutions in the n -+ 0 limit (and make 
a remark on the occurrence of complex eigenvalues of the Hessian matrix), there is no 
detailed study of the spin-glass phase. Ghatak and Sherrin on [l] just sketch a first-order 

suggested by Lage and de Almeida). 
To perform a numerical analysis of the spin-glass phase, we have to solve the nonlinear 

extremum equations (10) and (1  1). This problem can be simplified by using the variable 
x * ,  defined by (9) as an auxiliary parameter. We first solve (11) for q in terms of T and 
x* .  Since this is a one-variable problem, it is not difficult to see that, given T and x * ,  there 
is only one positive root, q = q(T, x * ) .  Inserting this solution into (lo), we determine 
p = p(T, x * ) .  Both p and q are monotonically decreasing functions of T and x'.  Finally, 
from (9). we find D as a function of T and x*,  

P - 4  D = D (T, x * )  = AX' + - 
In figure 2, we have plotted the numerical results for the spin-glass order parameter q 
as a function of the crystal-field anisotropy D at some representative temperatures. As 
x* + -CO, the numerical calculations indicate that D -+ -CO, and q -+ qsK, where qSK 

boundary and claim that it ends at T = 0, and D = 1/ 3 ' '  2rr (which is one - half of the value 

(13) 2T ' 



3368 F A  da Costa et a1 

D 
S 

Figure 2. Spin-glass order parameter q as a function of the anisohopy pmmeter D for some 
representative temperaturer;. For T > i, the parameter 9 is a single-valued function of D. For 
f > T > To % 0.058, there is an interval of D where 9 is double valued. Finally, for T < TO, 
there are narrow intelvals of D where there are three or four distinct values of q ,  The inset 
shows the region of small values of q ,  for T = 0.05; the broken cuwe is the asymptotic result. 
When there are multiple solutions, we select the largest value of q .  

is the spin-glass order parameter of the Shenington-Kirkpatrick model. On the other hand, 
as x*  -+ +m, we find that q -+ 0, and 

which is the expression of the second-order boundary for T > 4. All these results can 
be justified by asymptotic analytic calculations. The spin-glass solutions exist only up to 
a certain maximum value of D which will be denoted 4. For T > 4, D, coincides 
with D, and there is only one spin-glass solution for all D < 0, = D,. For T c i, 
D, is larger than Dc and there are two distinct spin-glass solutions for D, < D < D, if 
T > TO Fci 0.058, as illustrated for the case T = 0.2 in figure 2. If T < TO, the situation 
becomes more complicated. As shown in the inset of figure 2. for T = 0.05, there is a 
narrow interval, DI < D < D2, where there are three or four spin-glass solutions. This 
rather surprising result can also be confirmed by analytic asymptotic calculations. 

In the presence of multiple spin-glass solutions, as in the region where there is a first- 
order transition, we are faced with the problem of selecting the physically meaningful result. 
In the paramagnetic case, we have used the stability criterion to choose the relevant solution. 
In the case of multiple spin-glass solutions, no such clear-cut choice is possible since none 
of them satisfies the stability requirements. In fact, as shown by Lage and de Almeida [3], 
the Hessian matrix of this problem has three distinct eigenvalues. As in the Sherrington- 
Kirkpatrick model, one of these eigenvalues is always negative for the replica-symmetric 
spin-glass solutions. The other eigenvalues, A*, may become negative or complex, and 
do not provide any clue for the selection of the spin-glass solution. However, we note 
that in the paramagnetic case the stable solution meets continuously with the solution at 
large values of D, where there is no ambiguity. We then follow this criterion to select the 
physically meaningful spin-glass solution. Namely, when there are multiple solutions, we 
select the branch which can be smoothly continued for small values of D. Indeed, this 
is the only consistent choice with continuous values of the free energy and the entropy 
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figure 3. Different regions in the fl-T plane 
acmrding to the nature of the eigenvalues of the 
Hessian mahix. In the region indicated by + (-) 
the eigenvalues are red and positive (negative). In 
the regions indicated by 'R > 0 (U < 0) the 
eigenvalues are complex and their real parts are 
positive (negative). Note that the three curves 
separating the different regions meet at the tricritical 
point T and also at the point B corresponding to T = 0 
and f l  = 1 f 6. Also shown are the curve f l  = 0, 
( N N O  GTI and the line of the iirst-order hansitions 
(curve JT). 

9 

inside the spin-glass phase. Therefore, in the presence of multiple spin-glass solutions, we 
always select the largest value of the order parameter q.  Equating the free energies of the 
spin-glass and the paramagnetic solutions, we locate the tirst-order boundary. The result is 
shown in figure 3, together with the regions where the eigevalues A* are positive, negative, 
and complex. It is remarkable that all the stability conditions of the spin-glass solution are 
violated in the region where the first-order transition takes place. At T = 0, the first-order 
transition occurs at D e 0.9, which is about twice the value I/& quoted by previous 
authors [l,  41. 

In the x *  + -CO limit, we have rpl (x )  + tanh ( x ) .  and fi ( x )  --t 1. Therefore, the 
extremum conditions are given by p r+ 1, and 

which is the well known expression for the Sherrington-Kirkpatrick order parameter q S K .  
In the opposite limit, x* + +CO, with finite D,  we have q + 0 with f i x '  c W. To 
obtain the extremum equations, we have to evaluate integrals of the form 

It is straightforward to expand f (p)about the origin to perform an integration term by term. 
We then write an expansion of p in powers of q and insert into (13). Finally, we have 

(17) 

where D, is given by (14). and the coefficients A, B ,  C, . . . are temperaluredependent. 
Equation (17) shows that D (q = 0) = DE. The slope of the curve D (q) at q = 0 is given 
by (aD/aq),,o = A = (1 - 3 T )  / [2T (1 - T ) ] ,  which is negative for T i ,  and positive 
for T .c f. As illush.ated in figure 3, these results confirm the numerical calculations of 
the last paragraph. The surprising behaviour of the curve D (q)  at low temperatures is also 
confirmed hy the asymptotic calculations, as shown by the comparison between the two 
results in the inset of figure 3. We can determine the approximate temperature for the onset 
of this kind of behaviour by requiring that the equation aD/aq = A + 2Bq + 3Cqz = 0 
admits two real roots, that is, BZ - 3AC =- 0. The equation 8' - 3AC = 0 has the solution 
To = 0.058 076 7 . .  , , which is in good agreement with the numerical value of TO . 

D ( 4 )  = Dc + A q  + B q Z +  Cq3 +... 



3370 

where 

F A  da Costa et a1 

and 

(21) f ~ = 4 ( a - i n a ) - ( t + i n ~ ) t + ( f ~ - - t ) .  3 2  

f, = fo + 3’ - $( - +)3/2 + 0(t4). 

In the spin-glass phase, we choose the largest value of q to obtain the free energy per spin, 

(22) 
Equating the expressions of fp and fsg, we obtain the asymptotic form of the first-order 
boundary, 

€ = - [ ~ ~ 0 ~ ~ ( ~ ~ ) ] t * = - ( 7 . 9 2 2 1 2 5  ...) tZ (23) 
with a coefficient in disagreement with the result of Mottishaw and Sbenington [4]. We have 
also corrected some additional results of Mottishaw and Sherrington in the neighbourhood 
of the tricritical point. Needless to say, our findings have always been checked against 
detailed numerical calculations. 

To study the spin-glass solutions near T = 0, we have to consider the separate cases 
x” < 0 and x* > 0. For x* c: 0, which corresponds to D c I/& at T = 0, a 
straightforward analysis of the extremum conditions (IO) and (11) yields the asymptotic 
result 

Inserting into the expression of the free energy, and neglecting exponentially small 
contributions, we have 

In the more interesting case x* > 0, and T <( 1, the functions PI ( x )  and @ ( x )  are given 
by the asymptotic form 

Since this expression becomes a step function at T = 0, we can derive an asymptotic 
expansion for the parameter p ,  given by (lo), in close analogy with the well known 
Sommerfeld expansion for the degenerate electron gas. Thus, we have 

where 
(2” - 2) sb 

I h I  22” (b)! 
Q’1 C” = 

@,,, denotes the mth derivative of the e m r  function evaluated at xy/fi,  

dm 
@m = [G erf (2) I,.,, 
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and B2n are the Bernoulli numbers [5]. The spin-glass order parameter is given by the 
asymptotic expression 

Inserting p ,  given by (27), into the equation for the free energy, we obtain 

At T = 0 we have 

' p  (T = 0) = q (T 0) = 1 - @o 

and 

f, (T = 0) = (1 - 40)'/2 x* (1 - 40) - T@l " I  
where x* as a function of D comes from the equation 

D(T=0)=(1-4o)'/Z [ x*t--  :1-?40] (34) 

and @m is given by (29). Since the free energy of the paramagnetic phase vanishes at T = 0, 
the first-order transition is determined by the condition fss (T = 0) = 0. At the transition, we 
have x* = 0.612003.. . , from which we obtain D = 0.899903,. . , in complete agreement 
with the numerical calculations, but in disagreement with the value D = l / 6  which has 
been quoted by previous authors [1,4]. The negative slope of the first-order boundary, 

is related to the negative value of the ground-state entropy in the replica-symmetric 
approximation and also agrees with the numerical calculations. 

In conclusion, we have used numerical and analytic techniques to re-analyse the replica- 
symmetric solutions of the spin-glass model introduced by Ghatak and Sherrington [l]. 
Despite the occurrence of multiple spin-glass solutions and complex eigenvalues of the 
Hessian matrix, it is still possible to derive a consistent physical picture at the same level 
of the replica-symmehic solutions of the standard Sherrington-Kirkpatrick spin-glass model 
[2]. In particular, we did not find a discontinuous free energy along the first-order line, as 
mentioned by Lage and de Almeida [3]. We rather used the continuity of the free energy 
to establish the correct location of the boundaries in the D-T phase diagram. The negative 
slope of the first-order transition line at T = 0 (this slope is positive in the phase diagrams 
sketched by Ghatak and Sherrington [4]) is associated with the well known pathology of 
the ground-state entropy in the replica-symmetric approximation. Although there are no 
qualitative discrepancies, the asymptotic results of Mottishaw and Sherrington [4] in the 
vicinity of the tricritical point, in particular for the first-order line, are also slightly different 
from OUI own findings. 

It should be mentioned that the replica-symmetric spin-glass solutions are always 
unstable and unsatisfactory. Since the instabilities are even more serious in the Ghatak- 
Sherrington model, it certainly poses a more stringent test for the validity the replica- 
symmetry-breaking schemes. In fact, we have already performed a preliminary study of 
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this model in the first step of Parisi’s replica-symmetry-breaking ansatz [6]. The solutions 
are in the correct direction. The zero-temperature entropy and the slope of the first-order 
line at T = 0 are less negative. We expect that, in the full Parisi solution [7] of the model, 
the zero-temperature entropy and the slope will be exactly zero. Finally, we wish to mention 
that the Ghatak and Sherrington model on a Cayley tree has been considered by da Costa 
and Salinas IS]. In the infinite coordination limit, the model on the tree is described by the 
same replica-symmetric equations of this paper and consequently leads to the same results. 

F A  da Costa et al 
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